Grade 7 Science ## **Unit 1** The Classification of Matter | Estimated Time Frame for unit | Big Ideas | Essential
Question | Concept
(Know) | Competency
(Do) | Suggested
Resources | Vocabulary | PA Content /
Keystone
Standard | Suggested Lessons & Activities | |-------------------------------|--|--|---|---|--|---|--|--| | 4 weeks | Matter has
observable
physical
properties and
the potential
to mix and
form new
materials | How do scientists identify and sort materials? | Elements are the basic building blocks of matter that cannot be broken down chemically and are made up all of the same type of atoms. | Student should be able to recognize that the atom is the basic building block for all matter. | Glencoe – Physical
Science Chapter 15
Sec 1
Pgs 450-451
Associated
PowerPoint and
Worksheets
Lab kit
Element samples | Substance
Element | S7.C.1.1.2
S7.C.1.1.3
S8.C.1.1.1
S8.A.3.3.1
S8.A.3.3.2 | Demo –
Sodium and
water | | | Matter has
observable
physical
properties and
the potential
to mix and
form new
materials | How do scientists identify and sort materials? | When two or more substances are combined, they may react chemically to form a new substance with new properties. | Student should be able to identify the differences between elements and compounds. | Glencoe – Physical
Science Chapter 15
Sec 1
Pgs 452
Associated
PowerPoint and
Worksheets | Compound | S7.C.1.1.2
S7.C.1.1.3
S8.C.1.1.1
S8.A.3.3.1
S8.A.3.3.2 | | | | Matter has
observable
physical
properties and
the potential
to mix and
form new | How do scientists identify and sort materials? | When two or more
substances are
combined, they
may form a mixture
and maintain their
original properties. | Student should be able to identify the differences between substances and mixtures. | Glencoe – Physical
Science Chapter 15
Sec 1
Pgs 453-456
Associated
PowerPoint and
Worksheets | Heterogeneo
us
Homogeneou
s
Mixtures
Solution
Colloid | S7.C.1.1.2
S7.C.1.1.3
S8.C.1.1.1
S8.A.3.3.1
S8.A.3.3.2 | Video - Element, Compound and mixture Lab - Element, Compound and Mixture | | materials | | | | | Tyndall
effect
Suspension | | Lab –
Separating
mixtures | |--|--|---|--|--|---|---|---| | Matter has observable physical properties at the potentiato mix and form new materials | materials? | When two or more substances are combined, they may form a mixture and maintain their original properties. | Student should be
able to compare
and contrast
solutions, colloids
and suspensions | Glencoe – Physical
Science Chapter 15
Sec 1
Pgs 453-456
Associated
PowerPoint and
Worksheets | Heterogeneo us Homogeneou s Mixtures Solution Colloid Tyndall effect Suspension | \$7.C.1.1.2
\$7.C.1.1.3
\$8.C.1.1.1
\$8.A.3.3.1
\$8.A.3.3.2 | | | Matter has observable physical properties at the potentiato mix and form new materials | materials? | A substance has characteristic properties. | Student should be able to compare and contrast physical and chemical properties. | Glencoe – Physical
Science Chapter 15
Sec 2
Pgs 458-464
Associated
PowerPoint and
Worksheets | Physical
property
Chemical
property
Distillation | S6.C.1.1.1
S6.C.1.2.2
S7.C.1.1.1
S7.C.1.1.4
S8.C.1.1.2 | Video –
Chemical
changes
Lab –
Physical and
Chemical
change | | Matter has observable physical properties the potentiato mix and form new materials | materials? | A substance has characteristic properties. | Student should be able to identify substances using physical and chemical properties. | Glencoe – Physical
Science Chapter 15
Sec 2
Pgs 458-464
Associated
PowerPoint and
Worksheets | | S6.C.1.1.1
S6.C.1.2.2
S7.C.1.1.1
S7.C.1.1.4
S8.C.1.1.2 | | | Matter has
observable
physical | How do scientists identify and sort materials? | A substance has characteristic properties. | Student should be able to compare and contrast | Glencoe – Physical
Science Chapter 15
Sec 2
Pgs 458-464 | Physical
Change
Chemical | S6.C.1.1.1
S6.C.1.2.2
S7.C.1.1.1 | | | properties and
the potential
to mix and
form new
materials | | | physical and chemical changes | Associated
PowerPoint and
Worksheets | change | S7.C.1.1.4
S8.C.1.1.2 | | |---|--|--|--|--|-----------------------------------|--|--| | Matter has observable physical properties and the potential to mix and form new materials | How do scientists identify and sort materials? | A substance has characteristic properties. | Student should be able to calculate the density of any substance given its mass and volume. | Glencoe – Physical
Science Chapter 15
Sec 2
Pgs 458-464
Associated
PowerPoint and
Worksheets | Density
Mass
Volume | S6.C.1.1.2 | | | Matter has observable physical properties and the potential to mix and form new materials | How do scientists identify and sort materials? | A substance has characteristic properties. | Student should be able to distinguish between physical and chemical changes. | Glencoe – Physical
Science Chapter 15
Sec 2
Pgs 458-464
Associated
PowerPoint and
Worksheets | | S6.C.1.1.1
S6.C.1.2.2
S7.C.1.1.1
S7.C.1.1.4
S8.C.1.1.2 | | | Matter has observable physical properties and the potential to mix and form new materials | How do scientists identify and sort materials? | A substance has characteristic properties. | Student should be
able to explain how
the law of
conservation of
mass applies to
chemical changes | Glencoe – Physical
Science Chapter 15
Sec 2
Pg 465
Associated
PowerPoint and
Worksheets | Law of
Conservation
of mass | S8.A.3.1.4 | Review Unit
1
Assessment
Unit 1 | #### **Review Unit 1 The Classification of Matter** #### Assessment Unit 1 The Classification of Matter ## **Unit 2 The States of Matter** | Estimated
Time
Frame
for unit | Big Ideas | Essential
Question | Concept
(Know) | Competency
(Do) | Suggested
Resources | Vocabulary | PA Content /
Keystone
Standard | Suggested Lessons & Activities | |--|--|--|--|--|--|--|--------------------------------------|--| | 4 weeks | Matter has
observable
physical
properties and
the potential
to mix and
form new
materials | What determines whether a substance is a solid, liquid or gas? | Particles are always
in motion with the
smallest motion in
solids progressing
to the largest
motion in gases. | Student should be
able to explain
using a model the
kinetic theory of
matter | Glencoe – Physical
Science Chapter 16
Sec 2
Pgs 476-477
Associated
PowerPoint and
Worksheets | Kinetic
theory
Diffusion
Plasma
Thermal
Expansion | S7.C.1.2.2
S8.A.3.3.2 | Demo – Ball
and ring/ Bi-
metallic strip | | | Matter has
observable
physical
properties and
the potential
to mix and
form new
materials | What determines whether a substance is a solid, liquid or gas? | Particles are always
in motion with the
smallest motion in
solids progressing
to the largest
motion in gases. | Student should be
able to describe
particle movement
in four states
of
matter | Glencoe – Physical
Science Chapter 16
Sec 2
Pgs 477-479
Associated
PowerPoint and
Worksheets | | S7.C.1.2.2
S8.A.3.3.2 | | | | Matter has
observable
physical
properties and
the potential
to mix and
form new
materials | What determines whether a substance is a solid, liquid or gas? | Particles are always in motion with the smallest motion in solids progressing to the largest motion in gases. | Student should be able to explain what occurs at the molecular level at the melting and boiling points of a substance. | Glencoe – Physical
Science Chapter 16
Sec 2
Pgs 480-83
Associated
PowerPoint and
Worksheets | Melting point Heat of Fusion Boiling point Heat of Vaporization | S6.C.1.2.1
S6.C.2.1.2 | | | | Matter has
observable
physical
properties and
the potential | How do scientists use the behaviors of fluids in order to create new technologies? | Archimedes
principle is the
reason why objects
such as large ships
float. | Student should be
able to explain
Archimedes'
principle | Glencoe – Physical
Science Chapter 16
Sec 3
Pgs 485-486
Associated
PowerPoint and | Buoyancy
Density | S6.C.1.2.1
S6.C.2.1.2 | Lab –
Aluminum
foil boat | | to mix and form new | | | | Worksheets | | | | |--|--|--|---|--|--|---|---| | materials | | | | | | | | | Matter has
observable
physical
properties and
the potential
to mix and
form new
materials | How do scientists use the behaviors of fluids in order to create new technologies? | Pascal's principle is
the reason why a
hydraulic lift
enables a man to
lift large objects
such as a car. | Student should be
able to explain
Pascal's principle | Glencoe – Physical
Science Chapter 16
Sec 3
Pgs 486-487
Associated
PowerPoint and
Worksheets | Pressure | \$8.A.3.1.5
\$8.A.3.2.2
\$8.A.3.2.3
\$8.C.3.1.1
\$8.C.3.1.3 | Demo – Pascal demonstrator hydraulic lift Lab – Cartesian diver | | Matter has
observable
physical
properties and
the potential
to mix and
form new
materials | How do scientists use the behaviors of fluids in order to create new technologies? | Bernoulli's principle is the reason why a plane is able to take flight regardless of its weight. | Student should be able to explain Bernoulli's principle and explain how we use it. | Glencoe – Physical
Science Chapter 16
Sec 3
Pgs 488-489
Associated
PowerPoint and
Worksheets | Viscosity | \$8.A.3.1.5
\$8.A.3.2.2
\$8.A.3.2.3
\$8.C.3.1.1
\$8.C.3.1.3 | Lab –
Bernoulli's
Kit | | Matter has
observable
physical
properties and
the potential
to mix and
form new
materials | How do scientists use the behaviors of fluids in order to create new technologies? | The pressure that is felt by an object is the result of the collisions between gas particles and its surface. | Student should be
able to explain how
a gas exerts
pressure on a
container | Glencoe – Physical
Science Chapter 16
Sec 3
Pgs 490-491
Associated
PowerPoint and
Worksheets | Temperature
Pressure
Pascal (unit)
Volume | \$8.A.3.1.5
\$8.A.3.2.2
\$8.A.3.2.3
\$8.C.3.1.1
\$8.C.3.1.3 | Demo – Bell
glass jar
(balloon,
marshmallo
w)
Demo – can
crushing | | Matter has
observable
physical
properties and
the potential
to mix and
form new
materials | How do scientists
use the behaviors
of fluids in order
to create new
technologies? | There are three variables that describe a container of gas. Any change in one of these variables will cause a change in another variable, when the third variable is | Student should be
able to explain how
a gas is affected
when pressure,
temperature, or
volume is changed | Glencoe – Physical
Science Chapter 16
Sec 3
Pgs 492-495
Associated
PowerPoint and
Worksheets | Boyle's Law
Charles's
Law
Temperature
v Pressure
relationship | \$8.A.3.1.5
\$8.A.3.2.2
\$8.A.3.2.3 | Review Unit 3 Assessment Unit 3 | | | 1 | | | | | | | | | | | | |--|--|---|---|---|--|---|---|---|--|--|--|--| | | | | kept constant. | | | | | | | | | | | | Review Unit 2 The States of Matter | | | | | | | | | | | | | | Assessment Unit 2 The States of Matter | | | | | | | | | | | | | | Unit 3 Properties of Atoms and the Periodic Table | | | | | | | | | | | | | Estimated
Time
Frame
for unit | Big Ideas | Essential
Question | Concept
(Know) | Competency
(Do) | Suggested
Resources | Vocabulary | PA Content /
Keystone
Standard | Suggested Lessons & Activities | | | | | | 4 weeks | Matter has
observable
physical
properties and
the potential
to mix and
form new
materials | What are atoms made of and what is their role in determining the behaviors of the elements? | All matter is made up of building blocks called atoms. Atoms are characterized by their parts including protons, electrons, and neutrons. | Student should be
able to describe the
atomic structure
and components of
an atom | Glencoe – Physical
Science Chapter 17
Sec 1
Pgs 506-507
Associated
PowerPoint and
Worksheets | Atom Nucleus Proton Neutron Electron Electron cloud Quark | \$6.C.1.1.1
\$7.C.1.1.1
\$8.A.3.2.1
\$8.A.3.3.1
\$8.A.3.3.2 | Activity –
Read and
research
history of the
atomic
model | | | | | | | Matter has
observable
physical
properties and
the potential
to mix and
form new | What are atoms made of and what is their role in determining the behaviors of the elements? | All matter is made
up of building
blocks called
atoms. Atoms are
characterized by
their parts
including protons, | Student should be
able to using Bohr
models, illustrate
how electrons are
arranged in an
atom. | Glencoe – Physical
Science Chapter 17
Sec 1
Pgs 508-511
Associated
PowerPoint and
Worksheets | Atom Nucleus Proton Neutron Electron Electron cloud Quark | S6.C.1.1.1
S7.C.1.1.1
S8.A.3.2.1
S8.A.3.3.1
S8.A.3.3.2 | Activity –
Read and
research
history of the
atomic
model | | | | | Student should be model of the atom able to relate the Glencoe – Physical Science Chapter 17 Sec 1 Pgs 510 Atom Nucleus Proton S6.C.1.1.1 S7.C.1.1.1 S8.A.3.2.1 Activity - Read and research history of the electrons, and neutrons. up of building blocks called All matter is made What are atoms is their role in made of and what materials Matter has observable physical | properties and
the potential
to mix and
form new
materials | determining the behaviors of the elements? | atoms. Atoms are characterized by their parts including protons, electrons, and neutrons. | to technological advances. | Associated
PowerPoint and
Worksheets | Neutron
Electron
Electron
cloud Quark | S8.A.3.3.1
S8.A.3.3.2 | atomic
model | |--|---|---|---|--|---|---|---| | Matter has
observable
physical
properties and
the potential
to mix and
form new
materials | What are atoms made of and what is their role in determining the behaviors of the elements? | All matter is made up of building blocks called atoms. Atoms are characterized by their parts including protons, electrons, and neutrons. | Student should be able to interpret the periodic table with regards to atomic number, and atomic mass. | Glencoe – Physical
Science Chapter 17
Sec 2
Pgs 512-513
Associated
PowerPoint and
Worksheets |
Atomic
number
Mass number | S6.C.1.1.1
S7.C.1.1.1
S8.A.3.2.1
S8.A.3.3.1
S8.A.3.3.2 | Demo –
Relative
nature of
particle
masses | | Matter has
observable
physical
properties and
the potential
to mix and
form new
materials | What are atoms made of and what is their role in determining the behaviors of the elements? | All matter is made up of building blocks called atoms. Atoms are characterized by their parts including protons, electrons, and neutrons. | Student should be able to determine the number of protons, neutrons, and electrons of any atom, ion or isotope. | Glencoe – Physical
Science Chapter 17
Sec 2
Pgs 514-515
Associated
PowerPoint and
Worksheets | Isotope | S6.C.1.1.1
S7.C.1.1.1
S8.A.3.2.1
S8.A.3.3.1
S8.A.3.3.2 | | | Matter has
observable
physical
properties and
the potential
to mix and
form new
materials | What are atoms made of and what is their role in determining the behaviors of the elements? | There are over one hundred known elements each with characteristic properties from which all other matter is made. | Student should be able to use the periodic table to obtain information | Glencoe – Physical
Science Chapter 17
Sec 3
Chapter 19
Pgs 516-524 & 570-
591
Associated
PowerPoint and
Worksheets | Periodic
Table
Group
Period
Electron dot
diagram | \$6.C.1.1.1
\$7.C.1.1.1
\$8.A.3.2.1
\$8.A.3.3.1
\$8.A.3.3.2 | Activity –
Periodic
table
creation and
organizing | | Matter has
observable
physical
properties and | What are atoms made of and what is their role in determining the | There are over one hundred known elements each with characteristic | Student should be
able to explain
what the terms
metal, nonmetal, | Glencoe – Physical
Science Chapter 19
Pgs 570-591
Associated
PowerPoint and | Metal
Nonmetal
Metalloid | S6.C.1.1.1
S7.C.1.1.1
S8.A.3.2.1
S8.A.3.3.1 | Activity – Periodic table creation and organizing | | the potential behaviors of the | e properties from | and metalloid | Worksheets | S8.A.3.3.2 | |--------------------------------|-------------------|---------------|------------|------------| | to mix and elements? | which all other | | | | | form new | matter is made. | | | | | materials | | | | | ## Review Unit 3 Properties of Atoms and the Periodic Table ### Assessment Unit 3 Properties of Atoms and the Periodic Table ## **Unit 4 Chemical Bonds and Reactions** | Estimated | Big Ideas | Essential | Concept | Competency | Suggested | Vocabulary | PA Content / | Suggested | |-----------|--|---|---|--|---|---|--|------------| | Time | | Question | (Know) | (Do) | Resources | | Keystone | Lessons | | Frame | | | | | | | Standard | & | | for unit | | | | | | | | Activities | | 3 weeks | Matter has
observable
physical
properties and
the potential
to mix and
form new | Why do chemical reactions take place between two neutral atoms of different elements? | When two or more substances are combined, they may form a anew substance with new properties. | Student should be able to describe how a compound differs from its component elements. | Glencoe – Physical
Science Chapter 20
Pgs 602-603
Associated
PowerPoint and
Worksheets | Chemical
bonds
Chemical
formulas | S7.C.1.2.1
S8.C.1.1.3
S8.A.3.1.5
S8.A.3.2.1 | | | | materials Matter has observable physical properties and the potential to mix and form new materials | Why do chemical reactions take place between two neutral atoms of different elements? | When two or more substances are combined, they may form a new substance with new properties. | Student should be able to state a reason why chemical bonding occurs. | Glencoe – Physical
Science Chapter 20
Pgs 604-611
Associated
PowerPoint and
Worksheets | Compound | \$7.C.1.2.1
\$8.C.1.1.3
\$8.A.3.1.5
\$8.A.3.2.1 | | | | Matter has observable | Why do chemical reactions take | When two or more substances are | Student should be able to describe | Glencoe – Physical
Science Chapter 20
Pgs 604-611 | Ionic bond
Covalent | S7.C.1.2.1
S8.C.1.1.3 | | | physical
properties and
the potential
to mix and
form new
materials | place between two
neutral atoms of
different
elements? | combined, they may form a a new substance with new properties. | ionic and covalent
bonds | Associated
PowerPoint and
Worksheets | bond
Ion
Molecule | S8.A.3.1.5
S8.A.3.2.1 | |---|---|---|--|---|---|--| | Matter has observable physical properties and the potential to mix and form new materials | Why do chemical reactions take place between two neutral atoms of different elements? | When two or more substances are combined, they may form a new substance with new properties. | Student should be able to identify the substances produced by ionic bonding and covalent bonding | Glencoe – Physical
Science Chapter 20
Pgs 604-611
Associated
PowerPoint and
Worksheets | Ionic bond
Covalent
bond
Ion
Molecule | S7.C.1.2.1
S8.C.1.1.3
S8.A.3.1.5
S8.A.3.2.1 | | Matter has observable physical properties and the potential to mix and form new materials | Why do chemical reactions take place between two neutral atoms of different elements? | When two or more
substances are
combined, they
may form a new
substance with new
properties. | Student should be
able to distinguish
between a nonpolar
and polar covalent
bonds | Glencoe – Physical
Science Chapter 20
Pgs 612-614
Associated
PowerPoint and
Worksheets | Polar
molecule
Nonpolar
molecule | S7.C.1.2.1
S8.C.1.1.3
S8.A.3.1.5
S8.A.3.2.1 | | | | Review Unit 4 Che | emical Bonds and Reac | tions | | | | | | Assessment Unit 4 (| Chemical Bonds and Re | eactions | | | Unit 5 Motion Competency (Do) Suggested Resources Vocabulary PA Content / Keystone Standard Suggested Lessons & Activities Concept (Know) Estimated Time Frame for unit **Big Ideas** Essential Question | 4 weeks | An object's motion is the result of all forces acting on it. | How are the forces acting on an object related to its motion? | The motion of an object can be described by its position, direction and speed. | Student should be
able to explain the
difference between
speed and velocity | Glencoe – Physical
Science Chapter 2 Sec
1
Pgs 38-39 & 44
Associated
PowerPoint and
Worksheets | Distance Displacement Speed Velocity Time | \$6.C.3.1.1
\$7.C.3.1.1
\$7.C.3.1.2
\$8.A.3.2.1
\$8.A.3.2.3
\$8.C.3.1.1 | | |---------|--|---|--|--|--|--|--|--| | | An object's motion is the result of all forces acting on it. | How are the forces acting on an object related to its motion? | The motion of an object can be described by its position, direction and speed | Student should be
able to calculate
velocity, distance
and time using one
step equations | Glencoe – Physical
Science Chapter 2 Sec
1
Pgs 39-40
Associated
PowerPoint and
Worksheets | Instantaneous
speed
Average
speed | S6.C.3.1.1
S7.C.3.1.1
S7.C.3.1.2
S8.A.3.2.1
S8.A.3.2.3
S8.C.3.1.1 | | | | An object's motion is the result of all forces acting on it. | How are the forces acting on an object related to its motion? | The motion of an object can be described by its position, direction and speed. | Student should be able to solve problems of motion performing direct and indirect measurements of the motion of objects and performing graphical analysis of this experimental data. | Glencoe – Physical
Science Chapter 2 Sec
1
Pgs 39-40
Associated
PowerPoint and
Worksheets | Instantaneous
speed
Average
speed | S6.C.3.1.1
S7.C.3.1.1
S7.C.3.1.2
S8.A.3.2.1
S8.A.3.2.3
S8.C.3.1.1 | Lab –
Constant
Motion Cart | | | An object's motion is the result of all forces acting on it. | How are the forces acting on an object related to its motion? | Models and graphs can be used to determine the motion of an object. | Student should be able to plot and interpret
velocity vs time graphs. | Glencoe – Physical
Science Chapter 2 Sec
1
Pgs 41-43
Associated
PowerPoint and
Worksheets | Instantaneous
speed
Average
speed | S6.C.3.1.1
S7.C.3.1.1
S7.C.3.1.2
S8.A.3.2.1
S8.A.3.2.3
S8.C.3.1.1 | Activity –
Graph Lab
data and
compare
slope to
calculated
velocity | | | An object's motion is the result of all | How are the forces acting on an object related to its | The motion of an object can be described by its | Student should be able to describe how acceleration, | Glencoe – Physical
Science Chapter 2 Sec
2
Pgs 47-50 | Acceleration | \$6.C.3.1.1
\$7.C.3.1.1
\$7.C.3.1.2 | Video –
Thrill Ride | | forces acting on it. | motion? | change in speed (acceleration) | time and velocity are related. | Associated
PowerPoint and
Worksheets | | S8.A.3.2.1
S8.A.3.2.3
S8.C.3.1.1 | | |--|---|---|---|---|---|--|--| | An object's motion is the result of all forces acting on it. | How are the forces acting on an object related to its motion? | The motion of an object can be described by its change in speed (acceleration) | Student should be able to calculate the acceleration of an object from its change in velocity and time interval data. | Glencoe – Physical
Science Chapter 2 Sec
2
Pgs 48-50
Associated
PowerPoint and
Worksheets | Acceleration | S6.C.3.1.1
S7.C.3.1.1
S7.C.3.1.2
S8.A.3.2.1
S8.A.3.2.3
S8.C.3.1.1 | | | An object's motion is the result of all forces acting on it. | How are the forces acting on an object related to its motion? | Newton's three
laws of motion can
be used to explain
and measure the
motion of objects. | Student should be able to explain how force and motion are related. | Glencoe – Physical
Science Chapter 2 Sec
3
Pgs 52-53
Associated
PowerPoint and
Worksheets | Force
Net force
Balanced
force | \$6.C.3.1.1
\$7.C.3.1.1
\$7.C.3.1.2
\$8.A.3.2.1
\$8.A.3.2.3
\$8.C.3.1.1 | Lab –
Push/Pull pg
57 | | An object's motion is the result of all forces acting on it. | How are the forces acting on an object related to its motion? | The property inertia is an object's resistance to a change in its motion. | Student should be able to describe what inertia is and how it is related to Newton's first law of motion | Glencoe – Physical
Science Chapter 2 Sec
3
Pgs 54-56
Associated
PowerPoint and
Worksheets | Inertia | \$6.C.3.1.1
\$7.C.3.1.1
\$7.C.3.1.2
\$8.A.3.2.1
\$8.A.3.2.3
\$8.C.3.1.1 | | | An object's motion is the result of all forces acting on it. | How are the forces acting on an object related to its motion? | The property inertia is an object's resistance to a change in its motion. | Student should be able to identify the forces and motion that are present during a car crash. | Glencoe – Physical
Science Chapter 2 Sec
3
Pgs 54-56
Associated
PowerPoint and
Worksheets | Inertia | \$6.C.3.1.1
\$7.C.3.1.1
\$7.C.3.1.2
\$8.A.3.2.1
\$8.A.3.2.3
\$8.C.3.1.1 | Video – Car
Crash (Erie
Insurance) | #### **Review Unit 5 Motion** #### **Assessment Unit 5 Motion** | Unit 6 | Forces | |--------|---------------| | | | | | | | · | Unit 6 Forces | | | | | |--|--|---|---|---|---|---|--|----------------------------------| | Estimated
Time
Frame
for unit | Big Ideas | Essential
Question | Concept
(Know) | Competency
(Do) | Suggested
Resources | Vocabulary | PA Content /
Keystone
Standard | Suggested Lessons & Activities | | 4 weeks | An object's motion is the result of all forces acting on it. | How can
Newton's laws be
used to analyze
and predict
changes in the
motion of objects? | Pushes, pulls, friction, and gravity are forces that can act upon an object to change its position, direction, and/or speed. | Student should be
able to define
Newton's second
law of motion | Glencoe – Physical
Science Chapter 3 Sec
1
Pgs 68-70
Associated
PowerPoint and
Worksheets | Newton's
second law of
motion
Friction | S6.C.3.1.2
S7.C.3.1.2
S8.A.3.2.1
S8.A.3.2.2
S8.A.3.2.3
S8.C.3.1.1 | | | | An object's motion is the result of all forces acting on it. | How can
Newton's laws be
used to analyze
and predict
changes in the
motion of objects? | Solve problems of motion and forces by: applying knowledge of Newton's Laws; performing direct and indirect measurements of the motion of objects and the forces acting upon them; and performing graphical analysis of this experimental data. | Student should be able to apply Newton's second law of motion. | | | S6.C.3.1.2
S7.C.3.1.2
S8.A.3.2.1
S8.A.3.2.2
S8.A.3.2.3
S8.C.3.1.1 | | | | An object's motion is the result of all forces acting on it. | How can Newton's laws be used to analyze and predict changes in the motion of objects? | Friction is a force that can act upon an object to change its position, direction, and/or speed. | Student should be able to describe the 3 different types of friction. | Glencoe – Physical
Science Chapter 2 Sec
2
Pgs 70-73
Associated
PowerPoint and
Worksheets | Static friction
Sliding
friction
Rolling
friction | S6.C.3.1.2
S7.C.3.1.2
S8.A.3.2.1
S8.A.3.2.2
S8.A.3.2.3
S8.C.3.1.1 | Lab – 5
board
friction kit | | An object's motion is the result of all forces acting on it. An object's motion is the result of all forces acting on it. | How can Newton's laws be used to analyze and predict changes in the motion of objects? How can Newton's laws be used to analyze and predict changes in the | Friction is a force that can act upon an object to change its position, direction, and/or speed. Weight is the result of the earth's gravitational force acting upon an object's mass. | Student should be able to observe the effects of air resistance on falling objects Student should be able to describe gravitational force and the two factors that affect it: | Glencoe – Physical Science Chapter 2 Sec 1 Pgs 73-74 Associated PowerPoint and Worksheets Glencoe – Physical Science Chapter 3 Sec 2 Pgs 75-79 Associated PowerPoint and | Air resistance Gravity Weight Free fall | \$6.C.3.1.2
\$7.C.3.1.2
\$8.A.3.2.1
\$8.A.3.2.2
\$8.A.3.2.3
\$8.C.3.1.1
\$6.C.3.1.2
\$7.C.3.1.2
\$8.A.3.2.1
\$8.A.3.2.2
\$8.A.3.2.3 | Demo – Paper sheet vs Paper ball Video – Invisible Force | |--|--|---|--|--|---|---|--| | An object's motion is the result of all forces acting on it. | motion of objects? How can Newton's laws be used to analyze and predict changes in the motion of objects? | Weight is the result
of the earth's
gravitational force
acting upon an
object's mass. | distance and size. Student should be able to distinguish between mass and weight. | Worksheets Glencoe – Physical Science Chapter 3 Sec 2 Pgs 75-79 Associated PowerPoint and Worksheets | Gravity
Weight
Free fall | S8.C.3.1.1
S6.C.3.1.2
S7.C.3.1.2
S8.A.3.2.1
S8.A.3.2.2
S8.A.3.2.3
S8.C.3.1.1 | Activity – Gravity around the solar system Demo – Free Fall and Weightlessn ess | | An object's motion is the result of all forces acting on it. | How can Newton's laws be used to analyze and predict changes in the motion of objects? | Weight is the result
of the earth's
gravitational force
acting upon an
object's mass. | Student should be able to explain why objects that are thrown will follow a curved path. | Glencoe – Physical
Science Chapter 3
Sec
2
Pgs 79-80
Associated
PowerPoint and
Worksheets | Projectile motion | \$6.C.3.1.2
\$7.C.3.1.2
\$8.A.3.2.1
\$8.A.3.2.2
\$8.A.3.2.3
\$8.C.3.1.1 | | | An object's motion is the result of all forces acting on it. | How can Newton's laws be used to analyze and predict changes in the motion of objects? | Weight is the result
of the earth's
gravitational force
acting upon an
object's mass. | Student should be able to compare circular motion with motion in a straight line. | Glencoe – Physical
Science Chapter 3 Sec
2
Pgs 81-82
Associated
PowerPoint and
Worksheets | Centripetal
acceleration
Centripetal
force | \$6.C.3.1.2
\$7.C.3.1.2
\$8.A.3.2.1
\$8.A.3.2.2
\$8.A.3.2.3
\$8.C.3.1.1 | Demo –
Flying Pig | | An object's motion is the result of all forces acting on it. | How can Newton's laws be used to analyze and predict changes in the | Newton's third law
of motion can be
used to explain
natural phenomena
such as why a | Student should be
able to state
Newton's third law
of motion | Glencoe – Physical
Science Chapter 3 Sec
3
Pgs 83-85
Associated
PowerPoint and | Newton's
third law of
motion | \$6.C.3.1.2
\$7.C.3.1.2
\$8.A.3.2.1
\$8.A.3.2.2
\$8.A.3.2.3 | | | | motion of objects? | rower pushes water
backward in order
to move forward. | | Worksheets | | S8.C.3.1.1 | | |--|---|---|---|---|------------------------------------|--|---| | An object's motion is the result of all forces acting on it. | How can
Newton's laws be
used to analyze
and predict
changes in the
motion of objects? | Newton's third law
of motion can be
used to explain
natural phenomena
such as why a
rower pushes water
backward in order
to move forward. | Student should be able to identify action reaction pairs. | Glencoe – Physical
Science Chapter 3 Sec
3
Pgs 83-85
Associated
PowerPoint and
Worksheets | Newton's
third law of
motion | \$6.C.3.1.2
\$7.C.3.1.2
\$8.A.3.2.1
\$8.A.3.2.2
\$8.A.3.2.3
\$8.C.3.1.1 | Activity –
Newton's 3
laws poster | | An object's motion is the result of all forces acting on it. | How can
Newton's laws be
used to analyze
and predict
changes in the
motion of objects? | Solve problems of motion and forces by: applying knowledge of Newton's Laws; performing direct and indirect measurements of the motion of objects and the forces acting upon them; and performing graphical analysis of this experimental data. | Student should be able to calculate momentum. | Glencoe – Physical
Science Chapter 3 Sec
3
Pgs 86-88
Associated
PowerPoint and
Worksheets | Momentum | \$6.C.3.1.2
\$7.C.3.1.2
\$8.A.3.2.1
\$8.A.3.2.2
\$8.A.3.2.3
\$8.C.3.1.1 | Demo –
Newton's
Cradle
Demo – Air
Track | | An object's motion is the result of all forces acting on it. | How can
Newton's laws be
used to analyze
and predict
changes in the
motion of objects? | Solve problems of motion and forces by: applying knowledge of Newton's Laws; performing direct and indirect measurements of the motion of | Student should be able to recognize when momentum is conserved. | Glencoe – Physical
Science Chapter 3 Sec
3
Pgs 86-88
Associated
PowerPoint and
Worksheets | Momentum | \$6.C.3.1.2
\$7.C.3.1.2
\$8.A.3.2.1
\$8.A.3.2.2
\$8.A.3.2.3
\$8.C.3.1.1 | Lab –
Collision
carts | | | objects and the | | | | |--|----------------------|--|--|--| | | forces acting upon | | | | | | them; and | | | | | | performing | | | | | | graphical analysis | | | | | | of this experimental | | | | | | data. | | | | | | | | | | #### **Review Unit 6 Forces** #### **Assessment Unit 6 Forces** ## Unit 7 Energy | Estimated | Big Ideas | Essential | Concept | Competency | Suggested | Vocabulary | PA Content / | Suggested | |-----------|---|---|--|---|---|---|--|---| | Time | 9 | Question | (Know) | (Do) | Resources | , | Keystone | Lessons | | Frame | | _ | | | | | Standard | & | | for unit | | | | | | | | Activities | | 4 Weeks | Energy is neither created nor destroyed. Energy can be transformed from one form to another, but transformation between forms often results in the loss of useable energy through the production of heat. | How is energy transferred between objects and converted into different forms? | Energy can take many different forms including mechanical, thermal, chemical, and electromagnetic. | Student should be able to distinguish between kinetic and potential energy. | Glencoe – Physical
Science Chapter 4 Sec
I
Pgs 100-103
Associated
PowerPoint and
Worksheets | Kinetic
energy
Joule
Potential
Energy | \$7.C.2.1.2
\$8.C.2.1.1
\$8.C.2.1.3
\$8.C.3.1.2 | Lab –
Interpreting
data from a
slingshot pg
103 | | Energy is neither created nor destroyed. Energy can be transformed from one form to another, but transformation between forms often results in the loss of useable energy through the production of heat. | How is energy
transferred
between objects
and converted into
different forms? | Energy can take
many different
forms including
mechanical,
thermal, chemical,
and
electromagnetic. | Student should be able to describe different forms of potential energy. | Glencoe – Physical
Science Chapter 4 Sec
1
Pgs 103-104
Associated
PowerPoint and
Worksheets | Elastic potential energy Chemical potential energy | \$7.C.2.1.2
\$8.C.2.1.1
\$8.C.2.1.3
\$8.C.3.1.2 | Demo –
Energy cycle | |---|---|--|---|---|--|--|------------------------| | Energy is neither created nor destroyed. Energy can be transformed from one form to another, but transformation between forms often results in the loss of useable energy through the production of heat. | How is energy
transferred
between objects
and converted into
different forms? | The energy of an object in motion above the earth has both kinetic and potential energies. | Student should be able to calculate the kinetic and potential energy of an object at a specific speed and position above the earth. | Glencoe – Physical
Science Chapter 4 Sec
2
Pgs 107-110
Associated
PowerPoint and
Worksheets | Gravitational potential energy | \$7.C.2.1.2
\$8.C.2.1.1
\$8.C.2.1.3
\$8.C.3.1.2 | Lab – Ball
drop | | Energy is
neither created
nor destroyed.
Energy can be
transformed
from one form | How is energy
transferred
between objects
and converted into
different forms? | Describe sources
and forms of
energy and explain
their
transformations. | Student should be able to describe how energy can be transformed from one form to another. | Glencoe – Physical
Science Chapter 4 Sec
2
Pgs 107-110
Associated
PowerPoint and
Worksheets | Gravitational potential energy | S7.C.2.1.2
S8.C.2.1.1
S8.C.2.1.3
S8.C.3.1.2 | | | to another, but transformation | | | | | | | | |---|---|---|---|---|----------------------|--|--------------------------------| | between forms | | | | | | | | | often results in | | |
 | | | | | the loss of | | | | | | | | | useable energy | | | | | | | | | through the | | | | | | | | | production of | | | | | | | | | heat. | | | | | | | | | Energy is neither created nor destroyed. Energy can be transformed from one form to another, but transformation between forms often results in the loss of useable energy through the production of | How is energy transferred between objects and converted into different forms? | Describe sources
and forms of
energy and explain
their
transformations. | Student should be able to describe how the potential energy of an object can turn into kinetic energy and vice versa. | Glencoe – Physical
Science Chapter 4 Sec
2
Pgs 107-110
Associated
PowerPoint and
Worksheets | Mechanical
energy | \$7.C.2.1.2
\$8.C.2.1.1
\$8.C.2.1.3
\$8.C.3.1.2 | Demo –
Pendulum of
Faith | | heat. | How is anomay | Enamarria | Student should be | Glencoe – Physical | Law of | S7.C.2.1.2 | Demo – | | Energy is neither created | How is energy transferred | Energy is conserved. | able to discuss the | Science Chapter 4 Sec | conservation | \$7.C.2.1.2
\$8.C.2.1.1 | Mass is | | nor destroyed. | between objects | Collect vou. | law of conservation | 2 | of energy | \$8.C.2.1.1
\$8.C.2.1.3 | energy | | Energy can be | and converted into | | of energy | Pgs 111-115
Associated | orchergy | \$8.C.3.1.2 | "Nuclear
Power" | | transformed | different forms? | | or onergy | PowerPoint and | | 20.0.0.1.2 | Activity – | | from one form | | | | Worksheets | | | Calorie | | to another, but | | | | | | | tracker | | transformation | | | | | | | | | between forms | | | | | | | | | often results in | | | | | | | | | the loss of | | | | | | | | | useable energy | | | | | | | | | | through the production of heat. | | | | | | | | |--|---------------------------------|-----------------------|-------------------|-------------------|------------------------|------------|--------------------------------------|--------------------------------| | | | | Review | Unit 7 Energy | | | | | | | | | Assessme | nt Unit 7 Energy | | | | | | | | | Unit 8 Si | imple Machines | | | | | | Estimated
Time
Frame
for unit | Big Ideas | Essential
Question | Concept
(Know) | Competency (Do) | Suggested
Resources | Vocabulary | PA Content /
Keystone
Standard | Suggested Lessons & Activities | | 3 Weeks | A simple | How do simple | Simple machines | Student should be | Glencoe – Physical | Work | S7 C 3 1 3 | Lab – Peopl | | Estimated | Big Ideas | Essential | Concept | Competency | Suggested | Vocabulary | PA Content / | Suggested | |-----------|---|---|--|--|---|---------------|---|---| | Time | | Question | (Know) | (Do) | Resources | | Keystone | Lessons | | Frame | | | | | | | Standard | & | | for unit | | | | | | | | Activities | | 3 Weeks | A simple machine is a system that has work done on it. It, in turn, does work on an object or another system. | How do simple machines decrease the effort necessary for a person to do work? | Simple machines
help accomplish a
task with less effort
by either changing
the direction of
motion or
increasing the
mechanical
advantage. | Student should be able to describe how work and energy are related. | Glencoe – Physical
Science Chapter 5 Sec
1
Pgs 126-127
Associated
PowerPoint and
Worksheets | Work
Power | \$7.C.3.1.3
\$8.A.3.1.1
\$8.A.3.1.3
\$8.A.3.1.5
\$8.A.3.2.2
\$8.A.3.2.3
\$8.C.3.1.3 | Lab – People
Power
Activity –
Electric
bill/graph
poster | | | A simple machine is a system that has work done on it. It, in turn, does work on an object or another | How do simple machines decrease the effort necessary for a person to do work? | Simple machines
help accomplish a
task with less effort
by either changing
the direction of
motion or
increasing the
mechanical
advantage. | Student should be able to calculate the work and power done when a force makes an object move. | Glencoe – Physical
Science Chapter 5 Sec
1
Pgs 128-130
Associated
PowerPoint and
Worksheets | Work
Power | \$7.C.3.1.3
\$8.A.3.1.1
\$8.A.3.1.3
\$8.A.3.1.5
\$8.A.3.2.2
\$8.A.3.2.3
\$8.C.3.1.3 | | | system. | | | | | | | | |---|---|--|--|---|--|--|--| | A simple machine is a system that has work done on it. It, in turn, does work on an object or another system. | How do simple machines decrease the effort necessary for a person to do work? | Simple machines
help accomplish a
task with less effort
by either changing
the direction of
motion or
increasing the
mechanical
advantage. | Student should be
able to explain how
machines make
doing "work"
easier. | Glencoe – Physical
Science Chapter 5 Sec
2
Pgs 132-135
Associated
PowerPoint and
Worksheets | Input force
Output force
Mechanical
advantage | S7.C.3.1.3
S8.A.3.1.1
S8.A.3.1.3
S8.A.3.1.5
S8.A.3.2.2
S8.A.3.2.3
S8.C.3.1.3 | Demo – The
lever arm | | A simple machine is a system that has work done on it. It, in turn, does work on an object or another system. | How do simple machines decrease the effort necessary for a person to do work? | Simple machines
help accomplish a
task with less effort
by either changing
the direction of
motion or
increasing the
mechanical
advantage. | Student should be able to calculate the mechanical advantage of a machine. | Glencoe – Physical
Science Chapter 5 Sec
2
Pgs 136
Associated
PowerPoint and
Worksheets | Mechanical
advantage | S7.C.3.1.3
S8.A.3.1.1
S8.A.3.1.3
S8.A.3.1.5
S8.A.3.2.2
S8.A.3.2.3
S8.C.3.1.3 | Lab – Work
with ramps | | A simple machine is a system that has work done on it. It, in turn, does work on an object or another system. | How do simple machines decrease the effort necessary for a person to do work? | Simple machines
help accomplish a
task with less effort
by either changing
the direction of
motion or
increasing the
mechanical
advantage. | Student should be able to calculate the efficiency of a machine. | Glencoe – Physical
Science Chapter 5 Sec
2
Pgs 137
Associated
PowerPoint and
Worksheets | Efficiency | S7.C.3.1.3
S8.A.3.1.1
S8.A.3.1.3
S8.A.3.1.5
S8.A.3.2.2
S8.A.3.2.3
S8.C.3.1.3 | | | A simple machine is a system that has work done on it. It, in | How do simple
machines decrease
the effort
necessary for a
person to do | Simple machines
help accomplish a
task with less effort
by either changing
the direction of | Student should be
able to apply
mechanical
advantage to the six
different types of | Glencoe – Physical
Science Chapter 5 Sec
3
Pgs 138-146
Associated
PowerPoint and
Worksheets | Lever Pulley Block and tackle Wheel and | S7.C.3.1.3
S8.A.3.1.1
S8.A.3.1.3
S8.A.3.1.5
S8.A.3.2.2 | Lab – Pulley
systems pg
149
Lab – Lever
pg 147 | | turn, does | work? | motion or | simple machines. | axle | S8.A.3.2.3 | | |------------|-------|----------------|------------------|----------|------------|--| | work on an | | increasing the | | Inclined | S8.C.3.1.3 | | | object or | | mechanical | | plane | | | | another | | advantage. | | Screw | | | | system. | | - | | Wedge | | | | | | | | | | | ## **Review Unit 8 Simple Machines** ### **Assessment Unit 8 Simple Machines** ## **Unit 9 Thermal Energy** | Estimated
Time
Frame
for unit | Big Ideas | Essential
Question | Concept
(Know) | Competency (Do) | Suggested
Resources | Vocabulary | PA Content /
Keystone
Standard | Suggested
Lessons
&
Activities | |--|---|---|---|--
---|--|--|---| | 3 Weeks | Energy is neither created nor destroyed. Energy can be transformed from one form to another, but transformation between forms often results in the loss of useable energy through the production of heat. | How is thermal energy transferred from a warmer to a cooler object? | Energy can be transformed within a system or transferred from one system to another (or from a system to its environment) in different ways. Thermal energy is transferred from warmer objects to cooler objects. | Student should be able to describe the Sun as the major source of energy that impacts the environment. | Glencoe – Physical
Science Chapter 6 Sec
1
Pgs 158-163
Associated
PowerPoint and
Worksheets | Temperatur e Thermal energy Heat Specific heat | S6.C.2.1.1
S6.C.2.1.3
S8.A.3.1.1
S8.A.3.1.2
S8.A.3.1.3
S8.A.3.2.2
S8.C.2.1.1
S8.C.2.1.2
S8.C.2.1.3
S8.C.2.2.1
S8.C.2.2.1 | | | | Energy is neither created | How is thermal energy | Energy can be transformed within | Student should be able to explain how | Glencoe – Physical
Science Chapter 6 Sec
2 | Conduction
Convection | S6.C.2.1.1
S6.C.2.1.3 | Lab:
convection | | nor destroyed. Energy can be transformed from one form to another, but transformation between forms often results in the loss of useable energy through the production of heat. | transferred from
a warmer to a
cooler object? | a system or
transferred from
one system to
another (or from a
system to its
environment) in
different ways.
Thermal energy is
transferred from
warmer objects to
cooler objects. | energy is
transferred from
one place to
another through
convection,
conduction and
radiation. | Pgs 164-71
Associated
PowerPoint and
Worksheets | Radiation
Insulator | S8.A.3.1.1
S8.A.3.1.2
S8.A.3.1.3
S8.A.3.2.2
S8.C.2.1.1
S8.C.2.1.2
S8.C.2.1.3
S8.C.2.2.1
S8.C.2.2.1 | | |---|---|---|---|---|--|--|--| | Energy is neither created nor destroyed. Energy can be transformed from one form to another, but transformation between forms often results in the loss of useable energy through the production of heat. | How is thermal energy transferred from a warmer to a cooler object? | Energy can be transformed within a system or transferred from one system to another (or from a system to its environment) in different ways. Thermal energy is transferred from warmer objects to cooler objects. | Student should be able to describe how engineers use models to develop new and improved technologies to solve problems. | Glencoe – Physical
Science Chapter 6 Sec
3
Pgs 172-179
Associated
PowerPoint and
Worksheets | Solar collectors Thermodyn amics First law of thermodyna mics Second law of thermodyna mics Heat engine Internal combustion engine | S6.C.2.1.1
S6.C.2.1.3
S8.A.3.1.1
S8.A.3.1.2
S8.A.3.1.3
S8.A.3.2.2
S8.C.2.1.1
S8.C.2.1.2
S8.C.2.1.3
S8.C.2.2.1
S8.C.2.2.1 | | ## **Review Unit 9 Thermal Energy** ### **Assessment Unit 9 Thermal Energy** | | Unit 10 Electricity and Magnetism | | | | | | | | | |-------------------------------|--|--|--|---|---|--|--|--|--| | Estimated Time Frame for unit | Big Ideas | Essential
Question | Concept
(Know) | Competency
(Do) | Suggested
Resources | Vocabulary | PA Content /
Keystone
Standard | Suggested Lessons & Activities | | | 3 weeks | An object's motion is the result of all forces acting on it. | What causes objects to move? | Two of the fundamental forces that exist in the universe are gravity and electromagnetism. | Describe how electric charges exert forces on each other. | Glencoe – Physical
Science Chapter 7 Sec
1
Pgs 192-199
Associated
PowerPoint and
Worksheets | Static electricity Law of conservation of charge Conductor Insulator Charging by contact Charging by induction | S6.C.3.2.1
S6.C.3.2.2
S6.C.3.2.3
S6.C.2.1.3
S8.A.3.1.4
S8.C.2.1.1
S8.C.2.1.2
S8.C.2.1.2
S8.C.2.1.3
S8.C.2.2.1 | Activity:
Changes
(page 193); | | | | An object's motion is the result of all forces acting on it. | What causes objects to move? | Two of the fundamental forces that exist in the universe are gravity and electromagnetism. | Explain how objects become electrically charged. | Glencoe – Physical
Science Chapter 7 Sec
1
Pgs 192-199
Associated
PowerPoint and
Worksheets | Static electricity Law of conservation of charge Conductor Insulator Charging by contact Charging by induction | S6.C.3.2.1
S6.C.3.2.2
S6.C.3.2.3
S6.C.2.1.3
S8.A.3.1.4
S8.C.2.1.1
S8.C.2.1.2
S8.C.2.1.2
S8.C.2.1.3
S8.C.2.2.1 | Minilab:
investigate
charged
objects
(page 198) | | | | Energy is
neither
created nor
destroyed.
Energy can be | How do energy
transformations
explain that
energy is neither
created nor | Batteries store
chemical energy
and transform it
into electrical
energy. | Describe how voltage difference causes current to flow. | Glencoe – Physical
Science Chapter 7 Sec
2
Pgs 200-205
Associated
PowerPoint and | Electric
current
Voltage
difference
Circuit | S6.C.3.2.1
S6.C.3.2.2
S6.C.3.2.3
S6.C.2.1.3
S8.A.3.1.4 | Minilab:
investigate
battery
addition
(page 202) | | | transformed | destroyed? | | | Worksheets | Resistance | S8.C.2.1.1 | | |-----------------|-------------------|------------------|---------------------|---|----------------|----------------------------|---------------------| | from one form | uestroyeu: | | | | Ohm's law | \$8.C.2.1.1
\$8.C.2.1.2 | | | to another, | | | | | Offili S law | \$8.C.2.1.2
\$8.C.2.1.3 | | | but | | | | | | | | | transformatio | | | | | | S8.C.2.2.1 | | | n between | | | | | | | | | forms often | | | | | | | | | results in the | | | | | | | | | loss of useable | | | | | | | | | | | | | | | | | | energy | | | | | | | | | through the | | | | | | | | | production of | | | | | | | | | heat. | 11. 1 | Dalla da alam | E ditaba | Glencoe – Physical | | 96 9 2 2 1 | I ala | | Energy is | How do energy | Batteries store | Explain how | Science Chapter 7 Sec | | S6.C.3.2.1 | Lab:
identifying | | neither | transformations | chemical energy | batteries produce a | 2 | | S6.C.3.2.2 | conductors | | created nor | explain that | and transform it | voltage difference | Pgs 200-205 | | S6.C.3.2.3 | and | | destroyed. | energy is neither | into electrical | in a circuit. | Associated PowerPoint and | | S6.C.2.1.3 | insulators | | Energy can be | created nor | energy. | | Worksheets | | S8.A.3.1.4 | (page 206) | | transformed | destroyed? | | | | | S8.C.2.1.1 | | | from one form | | | | | | S8.C.2.1.2 | | | to another, | | | | | | S8.C.2.1.3 | | | but | | | | | | S8.C.2.2.1 | | | transformatio | | | | | | | | | n between | | | | | | | | | forms often | | | | | | | | | results in the | | | | | | | | | loss of useable | | | | | | | | | energy | | | | | | | | | through the | | | | | | | | | production of | | | | | | | | | heat. | | | | | | | | | Energy is | How do energy | Electromagnetic | Describe the | Glencoe – Physical
Science Chapter 7 Sec | Series circuit | S6.C.3.2.1 | Activity: | | neither | transformations | energy can be | difference between | 3 | Parallel | S6.C.3.2.2 | examine | | created nor | explain that | transferred when | series and parallel | Pgs 207-213 | circuit | S6.C.3.2.3 | circuits | | | | | | | | | (page 208) | | End
tra
fro
to a
but
tra
n b
for
res
los
end
thr | dergy can be ansformed om one form another, at ansformatio between rms often sults in the ass of useable dergy rough the oduction of | energy is neither created nor destroyed? | an electrical source such as a battery or generator is connected in a complete circuit to an electrical device. | circuits. | Associated PowerPoint and Worksheets |
Electrical
power | S6.C.2.1.3
S8.A.3.1.4
S8.C.2.1.1
S8.C.2.1.2
S8.C.2.1.3
S8.C.2.2.1 | Lab:
comparing
series and
parallel
circuits
(page 214) | |---|--|--|---|--------------------------------------|---|--|--|---| | mc
res | otion is the sult of all rces acting | What causes objects to move? | Moving electric charges produce magnetic forces and moving magnets produce electric forces. | Explain how a magnet exerts a force. | Glencoe – Physical
Science Chapter 8 Sec
1
Pgs 224-230
Associated
PowerPoint and
Worksheets | Magnetism
Magnetic
field
Magnetic
pole
Magnetic
domain | S6.C.3.2.1
S6.C.3.2.2
S6.C.3.2.3
S6.C.2.1.3
S8.A.3.1.4
S8.C.2.1.1
S8.C.2.1.2
S8.C.2.1.2
S8.C.2.1.3
S8.C.2.2.1 | Launch lab:
strength of
magnets
(page 223)
Demo:
magnetic
fields (page
226)
Minilab:
making
your own
compass
(page 229) | ### **Review Unit 10 Electricity and Magnetism** ## Assessment Unit 10 Electricity and Magnetism